
Definition D1: A ring is a set of elements with two binary operations, called addition and multiplication, such that: 

 Addition is closed 

 Addition is commutative 

 Addition is associative 

 There exists an additive identity. (Do NOT call it 0 unless we have the uniqueness theorem)  

 There exist additive inverses (Do NOT call them −𝑎 unless we have the uniqueness theorem) 

 Multiplication is closed 

 Multiplication is associative 

 Multiplication distributes over addition  

 

Definition D2: Let 𝑅 be a ring and 𝑆 ⊆ 𝑅. 𝑆 is said to be a subring of 𝑅 if 𝑆 is itself a ring with the same operations as 𝑅. 

 

Theorem T1: Let 𝑎, 𝑏, and 𝑐 be elements of a ring 𝑅. If 𝑎 + 𝑏 = 𝑎 + 𝑐, then 𝑏 = 𝑐.  

 

Theorem T2: Let 𝑎 and 𝑏 be elements of a ring 𝑅. Then 𝑎 + 𝑥 = 𝑏 always has a unique solution. 

 

Theorem T3: Let 𝑅 be a ring. If 𝑎 + 01 = 𝑎 and 𝑎 + 02 = 𝑎 for all elements 𝑎 ∈ 𝑅, then 01 = 02.  

 

Theorem T4: For each element 𝑎 in a ring 𝑅, it’s additive inverse is unique.  

 

Theorem T5: Let 𝑎 be an element of a ring 𝑅 and denote the additive identity as 0. Then 𝑎 ⋅ 0 = 0 ⋅ 𝑎 = 0.  

 

Theorem T6:  Let 𝑅 be a ring and let 𝑎, 𝑏 ∈ 𝑅. Denote the additive inverse of each element 𝑐 ∈ 𝑅 as – 𝑐, no matter what 

𝑐 is. Then 𝑎(−𝑏) = (−𝑎)𝑏 = −(𝑎𝑏).  

 

Theorem T7: Let 𝑅 be a ring, and 𝑆 a subset of 𝑅. 𝑆 is a subring if and only if all of the following are satisfied for all 

elements 𝑎, 𝑏 ∈ 𝑆: 

1. 𝑆 ≠ ∅ 

2. 𝑎, 𝑏 ∈ 𝑆 ⇒ 𝑎 + 𝑏 ∈ 𝑆    

3. 𝑎, 𝑏 ∈ 𝑆 ⇒ 𝑎 ⋅ 𝑏 ∈ 𝑆    

4. 𝑎 ∈ 𝑆 ⇒ −𝑎 ∈ 𝑆    

 

Definition D2: Let 𝑅 be a ring. A multiplicative identity of 𝑅 is an element 𝑠 ∈ 𝑅 such that 𝑠𝑟 = 𝑟𝑠 = 𝑟 for all 𝑟 ∈ 𝑅. (Do 

NOT call it “1” until you justify that notation by proving that it is unique.) 

 

Theorem T8: Let 𝑅 be a ring. If 𝑅 has a multiplicative identity, then it is unique. 

 

Definition D3: Let 𝑅 and 𝑆 be rings. A function 𝜑: 𝑅 → 𝑆 is called a ring homomorphism if is satisfies:  

1. 𝜑(𝑟 + 𝑠) = 𝜑(𝑟) + 𝜑(𝑠) for all 𝑟, 𝑠 ∈ 𝑅. 

2. 𝜑(𝑟𝑠) = 𝜑(𝑟)𝜑(𝑠) for all 𝑟, 𝑠 ∈ 𝑅. 

 

Definition D4: Let 𝑅 and 𝑆 be rings. A ring homomorphism 𝜑: 𝑅 → 𝑆 is called a ring isomorphism if is also one-to-one 

and onto. In this case 𝑅 and 𝑆 have an identical structure as rings. 

 

Definition D5: Let 𝑅 be a ring. An element 𝑏 ≠ 0 in 𝑅 is called a zero divisor if there is another nonzero element 𝑎 ∈ 𝑅 

such that 𝑎𝑏 = 0.  



Definition D6: A ring that is commutative with unity and no zero divisors is called an integral domain. 

 

Theorem T9: Let 𝑅 be an integral domain and suppose 𝑎 ≠ 0. If 𝑎𝑏 = 𝑎𝑐, then 𝑏 = 𝑐. 

 

Definition D7: Let 𝑅 be a ring with unity and 𝑥 ∈ 𝑅. If there is some element 𝑦 ∈ 𝑅 such that 𝑥𝑦 = 1, we say that 𝑥 is 

invertible, or a unit. The set of all units of 𝑅 is denoted either 𝑈(𝑅) or 𝑅∗. 

 

Definition D8: Let 𝑅 be a commutative ring and 𝑎, 𝑏 ∈ 𝑅. We say that 𝑎 and 𝑏 are associates of each other if there is 

some 𝑢 ∈ 𝑅∗ such that 𝑎 = 𝑢𝑏. 

 

Definition D9: An integral domain in which every nonzero element is invertible is called a field. 

 

Theorem T10: Let 𝑛 be an integer at least 2. ℤ𝑛 is a field if and only if 𝑝 is prime.  

 

Theorem T11: 𝑥 ∈ ℤ𝑚 is a unit if and only if gcd(𝑥, 𝑚) = 1.  

 

Theorem T12: Let 𝑝 be a prime number and 0 ≠ 𝑥 ∈ ℤ𝑝. Then 𝑥𝑝−1 = 1 in ℤ𝑝.  

 

Theorem T13: Let 𝑅 be a finite integral domain. Then 𝑅 is a field.  

 

Definition D10: Let 𝑅 be a commutative ring. An ideal 𝐼 of 𝑅 is a subring that satisfies 𝑥𝑟 ∈ 𝐼 for all 𝑥 ∈ 𝐼 and 𝑟 ∈ 𝑅. 

 

Definition D11: A principal ideal is an ideal with a single generator: 〈𝑎〉 ≔ {𝑎𝑟|𝑟 ∈ 𝑅}. A ring is called a principal ideal 

domain (PID) if every ideal is principal. 

 

Theorem T14a: Let 𝑅 be a commutative ring with identity. Fix two elements 𝑎, 𝑏 ∈ 𝑅. If 〈𝑎〉 ⊆ 〈𝑏〉, then 𝑎 = 𝑏𝑡 for some 

𝑡 ∈ 𝑅. 

 

Theorem T14b: Let 𝑅 be a commutative ring with identity. Fix two elements 𝑎, 𝑏 ∈ 𝑅. If 𝑎 = 𝑏𝑡 for some 𝑡 ∈ 𝑅, then 

〈𝑎〉 ⊆ 〈𝑏〉. 

 

 

Theorem T15a: Let 𝑅 be a commutative ring with unity and 𝑟 ∈ 𝑅. If 〈𝑟〉 = 𝑅, then 𝑟 is a unit.   

 

Theorem T15b: Let 𝑅 be a commutative ring with unity and 𝑟 ∈ 𝑅. If 𝑟 is a unit, then 〈𝑟〉 = 𝑅. 

 

Theorem T16a: Let 𝑅 be an integral domain and let 𝑟, 𝑠 ∈ 𝑅. If 〈𝑟〉 = 〈𝑠〉, then 𝑟 and 𝑠 are associates.  

 

Theorem T16b: Let 𝑅 be an integral domain and let 𝑟, 𝑠 ∈ 𝑅. If 𝑟 and 𝑠 are associates, then 〈𝑟〉 = 〈𝑠〉.  

 

Theorem T17a: Let 𝑅 be a commutative ring with unity. If 𝑅 is a field then its only ideals are {0} and 𝑅 itself.  

 

Theorem T17b: Let 𝑅 be a commutative ring with unity. If its only ideals are {0} and 𝑅 itself then 𝑅 is a field. 

 

Theorem T18: ℤ is a PID. 

 



Theorem T19: Let 𝜑: 𝑅 → 𝑆 be a ring homomorphism. Then 𝜑(0𝑅) = 0𝑆 

 

Theorem T20: Let 𝜑: 𝑅 → 𝑆 be a ring homomorphism. Then 𝜑(−𝑎) = −𝜑(𝑎) for all 𝑎 ∈ 𝑅. 

 

Theorem T21: Let 𝜑: 𝑅 → 𝑆 be a ring homomorphism. Then 𝜑(𝑎 − 𝑏) = 𝜑(𝑎) − 𝜑(𝑏). 

 

Theorem T22: Let 𝜑: 𝑅 → 𝑆 be a ring homomorphism. Assume 𝑅 has unity, 𝜑 is onto and 𝑆 ≠ {0𝑆}. Then 𝜑(1𝑅) = 1𝑆. 

 

Theorem T23: Let 𝜑: 𝑅 → 𝑆 be a ring homomorphism. Assume 𝑅 has unity, 𝜑 is onto and 𝑆 ≠ {0𝑆}. Then if 𝑎 ∈ 𝑅 is a 

unit, then 𝜑(𝑎) is as well. Furthermore, (𝜑(𝑎))
−1

= 𝜑(𝑎−1). 

 

Theorem T24: Let 𝜑: 𝑅 → 𝑆 be a ring homomorphism. Then 𝜑(𝑅) is a ring. 

 

Definition D12: Let 𝜑: 𝑅 → 𝑆 be a ring homomorphism. Then the kernel of 𝜑 is ker(𝜑) ≔ {𝑟 ∈ 𝑅|𝜑(𝑟) = 0𝑆} 

 

Definition D13: Let 𝜑: 𝑅 → 𝑆 be a ring homomorphism. The preimage of an element 𝑠 ∈ 𝑆 is  

𝜑−1(𝑠) ≔ {𝑟 ∈ 𝑅|𝜑(𝑟) = 𝑠} 

 

Theorem T25a: Let 𝜑: 𝑅 → 𝑆 be a ring homomorphism. Then ker(𝜑) is a subring of 𝑅.  

 

Theorem T25b: Let 𝜑: 𝑅 → 𝑆 be a ring homomorphism. Then ker(𝜑) is an ideal of 𝑅.  

 

Definition D14: Let 𝑅 be a ring, 𝑟 ∈ 𝑅,  and 𝐼 an ideal of 𝑅. The coset of 𝐼 determined by 𝑟 is: 

𝐼 + 𝑟 ≔ {𝑎 + 𝑟|𝑎 ∈ 𝐼} 

 

Theorem T26: Let 𝜑: 𝑅 → 𝑆 be a ring homomorphism. Assume 𝑠 ∈ 𝜑(𝑅) and 𝑟 ∈ 𝜑−1(𝑠). Then: 

𝜑−1(𝑠) = ker(𝜑) + 𝑟 

 

Theorem T27a: Let 𝜑: 𝑅 → 𝑆 be a ring homomorphism. If 𝜑 is injective, then ker(𝜑) = {0𝑅} 

 

Theorem T27b: Let 𝜑: 𝑅 → 𝑆 be a ring homomorphism. If  ker(𝜑) = {0𝑅}, then 𝜑 is injective. 

 

Theorem T28a: Let 𝐼 be an ideal of a commutative ring 𝑅. Assume 𝑎, 𝑏 ∈ 𝐼. If 𝐼 + 𝑎 ⊆ 𝐼 + 𝑏, then 𝐼 + 𝑎 = 𝐼 + 𝑏.  

 

Theorem T28b: Let 𝐼 be an ideal of a commutative ring 𝑅. Assume 𝑎, 𝑏 ∈ 𝐼. If 𝐼 + 𝑎 ∩ 𝐼 + 𝑏 ≠ ∅, then 𝐼 + 𝑎 = 𝐼 + 𝑏.  

 

Theorem T28c: Let 𝐼 be an ideal of a commutative ring 𝑅. Assume 𝑎, 𝑏 ∈ 𝐼. If 𝐼 + 𝑎 = 𝐼 + 𝑏, then 𝑎 − 𝑏 ∈ 𝐼  

 

Theorem T29d: Let 𝐼 be an ideal of a commutative ring 𝑅. Assume 𝑎, 𝑏 ∈ 𝐼. If 𝑎 − 𝑏 ∈ 𝐼, then 𝐼 + 𝑎 = 𝐼 + 𝑏. 

 

Theorem T29e: Let 𝐼 be an ideal of a commutative ring 𝑅. Assume 𝑎, 𝑏 ∈ 𝐼. Then |𝐼 + 𝑎| = |𝐼 + 𝑏| 

 

  



Definition D15a: Let 𝐼 be an ideal of a commutative ring 𝑅. Assume 𝑎, 𝑏 ∈ 𝐼. Addition of cosets is defined as: 

(𝐼 + 𝑎) + (𝐼 + 𝑏) ≔ 𝐼 + (𝑎 + 𝑏) 

 

Definition D15b: Let 𝐼 be an ideal of a commutative ring 𝑅.  Assume 𝑎, 𝑏 ∈ 𝐼. Multiplication of cosets is defined as: 

(𝐼 + 𝑎) ⋅ (𝐼 + 𝑏) ≔ 𝐼 + (𝑎 ⋅ 𝑏) 

 

Theorem T30a: Let 𝐼 be an ideal of a commutative ring 𝑅. Addition of cosets of 𝐼 is well defined.  

 

Theorem T30b: Let 𝐼 be an ideal of a commutative ring 𝑅. Multiplication of cosets is well defined.  

 

Definition D16: Let 𝑅 be a commutative ring and 𝐼 an ideal of 𝑅. We define 𝑅 mod 𝐼 as: 

𝑅 𝐼⁄ ≔ {𝐼 + 𝑟|𝑟 ∈ 𝑅} 

 

Theorem T31: Let 𝑅 be a commutative ring and 𝐼 an ideal of 𝑅. Then 𝑅 𝐼⁄  is a ring. 

 

 

Definition D17: Let 𝑅 be a commutative ring and 𝐼 an ideal of 𝑅. The natural homomorphism from 𝑅 to 𝑅 𝐼⁄  is: 

𝑣: 𝑅 → 𝑅 𝐼⁄
𝑎 ↦ 𝐼 + 𝑎

 

 

Theorem T32: Let 𝑅 be a commutative ring and 𝐼 an ideal of 𝑅. Denote the natural homomorphism from 𝑅 to 𝑅 𝐼⁄  as 𝑣. 

Then ker(𝑣) = 𝐼.  

 


