Definition D1: A ring is a set of elements with two binary operations, called addition and multiplication, such that:

- Addition is closed
- Addition is commutative
- Addition is associative
- There exists an additive identity. (Do NOT call it 0 unless we have the uniqueness theorem)
- There exist additive inverses (Do NOT call them -a unless we have the uniqueness theorem)
- Multiplication is closed
- Multiplication is associative
- Multiplication distributes over addition

Definition D2: Let *R* be a ring and $S \subseteq R$. *S* is said to be a <u>subring</u> of *R* if *S* is itself a ring with the same operations as *R*.

Theorem T1: Let a, b, and c be elements of a ring R. If a + b = a + c, then b = c.

Theorem T2: Let *a* and *b* be elements of a ring *R*. Then a + x = b always has a unique solution.

Theorem T3: Let *R* be a ring. If $a + 0_1 = a$ and $a + 0_2 = a$ for all elements $a \in R$, then $0_1 = 0_2$.

Theorem T4: For each element *a* in a ring *R*, it's additive inverse is unique.

Theorem T5: Let *a* be an element of a ring *R* and denote the additive identity as 0. Then $a \cdot 0 = 0 \cdot a = 0$.

Theorem T6: Let *R* be a ring and let $a, b \in R$. Denote the additive inverse of each element $c \in R$ as -c, no matter what c is. Then a(-b) = (-a)b = -(ab).

Theorem T7: Let *R* be a ring, and *S* a subset of *R*. *S* is a subring if and only if all of the following are satisfied for all elements $a, b \in S$:

- 1. $S \neq \emptyset$
- 2. $a, b \in S \Rightarrow a + b \in S$
- 3. $a, b \in S \Rightarrow a \cdot b \in S$
- 4. $a \in S \Rightarrow -a \in S$

Definition D2: Let *R* be a ring. A multiplicative identity of *R* is an element $s \in R$ such that sr = rs = r for all $r \in R$. (Do NOT call it "1" until you justify that notation by proving that it is unique.)

Theorem T8: Let *R* be a ring. If *R* has a multiplicative identity, then it is unique.

Definition D3: Let *R* and *S* be rings. A function $\varphi: R \to S$ is called a ring homomorphism if is satisfies:

- 1. $\varphi(r+s) = \varphi(r) + \varphi(s)$ for all $r, s \in R$.
- 2. $\varphi(rs) = \varphi(r)\varphi(s)$ for all $r, s \in R$.

Definition D4: Let *R* and *S* be rings. A ring homomorphism $\varphi: R \to S$ is called a ring isomorphism if is also one-to-one and onto. In this case *R* and *S* have an identical structure as rings.

Definition D5: Let *R* be a ring. An element $b \neq 0$ in *R* is called a <u>zero divisor</u> if there is another nonzero element $a \in R$ such that ab = 0.

Definition D6: A ring that is commutative with unity and no zero divisors is called an integral domain.

Theorem T9: Let *R* be an integral domain and suppose $a \neq 0$. If ab = ac, then b = c.

Definition D7: Let *R* be a ring with unity and $x \in R$. If there is some element $y \in R$ such that xy = 1, we say that *x* is <u>invertible</u>, or a <u>unit</u>. The set of all units of *R* is denoted either U(R) or R^* .

Definition D8: Let *R* be a commutative ring and $a, b \in R$. We say that *a* and *b* are <u>associates</u> of each other if there is some $u \in R^*$ such that a = ub.

Definition D9: An integral domain in which every nonzero element is invertible is called a field.

Theorem T10: Let *n* be an integer at least 2. \mathbb{Z}_n is a field if and only if *p* is prime.

Theorem T11: $x \in \mathbb{Z}_m$ is a unit if and only if gcd(x, m) = 1.

Theorem T12: Let p be a prime number and $0 \neq x \in \mathbb{Z}_p$. Then $x^{p-1} = 1$ in \mathbb{Z}_p .

Theorem T13: Let *R* be a finite integral domain. Then *R* is a field.

Definition D10: Let *R* be a commutative ring. An <u>ideal</u> *I* of *R* is a subring that satisfies $xr \in I$ for all $x \in I$ and $r \in R$.

Definition D11: A <u>principal ideal</u> is an ideal with a single generator: $\langle a \rangle \coloneqq \{ar | r \in R\}$. A ring is called a <u>principal ideal</u> <u>ideal</u> <u>idea</u>

Theorem T14a: Let *R* be a commutative ring with identity. Fix two elements $a, b \in R$. If $\langle a \rangle \subseteq \langle b \rangle$, then a = bt for some $t \in R$.

Theorem T14b: Let *R* be a commutative ring with identity. Fix two elements $a, b \in R$. If a = bt for some $t \in R$, then $\langle a \rangle \subseteq \langle b \rangle$.

Theorem T15a: Let R be a commutative ring with unity and $r \in R$. If $\langle r \rangle = R$, then r is a unit.

Theorem T15b: Let *R* be a commutative ring with unity and $r \in R$. If *r* is a unit, then $\langle r \rangle = R$.

Theorem T16a: Let R be an integral domain and let $r, s \in R$. If $\langle r \rangle = \langle s \rangle$, then r and s are associates.

Theorem T16b: Let *R* be an integral domain and let $r, s \in R$. If *r* and *s* are associates, then $\langle r \rangle = \langle s \rangle$.

Theorem T17a: Let R be a commutative ring with unity. If R is a field then its only ideals are $\{0\}$ and R itself.

Theorem T17b: Let *R* be a commutative ring with unity. If its only ideals are $\{0\}$ and *R* itself then *R* is a field.

Theorem T18: \mathbb{Z} is a PID.

Theorem T19: Let $\varphi: R \to S$ be a ring homomorphism. Then $\varphi(0_R) = 0_S$

Theorem T20: Let $\varphi: R \to S$ be a ring homomorphism. Then $\varphi(-a) = -\varphi(a)$ for all $a \in R$.

Theorem T21: Let φ : $R \to S$ be a ring homomorphism. Then $\varphi(a - b) = \varphi(a) - \varphi(b)$.

Theorem T22: Let $\varphi: R \to S$ be a ring homomorphism. Assume *R* has unity, φ is onto and $S \neq \{0_S\}$. Then $\varphi(1_R) = 1_S$.

Theorem T23: Let $\varphi: R \to S$ be a ring homomorphism. Assume R has unity, φ is onto and $S \neq \{0_S\}$. Then if $a \in R$ is a unit, then $\varphi(a)$ is as well. Furthermore, $(\varphi(a))^{-1} = \varphi(a^{-1})$.

Theorem T24: Let $\varphi: R \to S$ be a ring homomorphism. Then $\varphi(R)$ is a ring.

Definition D12: Let $\varphi: R \to S$ be a ring homomorphism. Then the kernel of φ is ker $(\varphi) := \{r \in R | \varphi(r) = 0_S\}$

Definition D13: Let $\varphi: R \to S$ be a ring homomorphism. The <u>preimage</u> of an element $s \in S$ is $\varphi^{-1}(s) \coloneqq \{r \in R | \varphi(r) = s\}$

Theorem T25a: Let $\varphi: R \to S$ be a ring homomorphism. Then ker(φ) is a subring of R.

Theorem T25b: Let $\varphi: R \to S$ be a ring homomorphism. Then ker(φ) is an ideal of R.

Definition D14: Let *R* be a ring, $r \in R$, and *I* an ideal of *R*. The <u>coset</u> of *I* determined by *r* is: $I + r := \{a + r | a \in I\}$

Theorem T26: Let $\varphi: R \to S$ be a ring homomorphism. Assume $s \in \varphi(R)$ and $r \in \varphi^{-1}(s)$. Then: $\varphi^{-1}(s) = \ker(\varphi) + r$

Theorem T27a: Let $\varphi: R \to S$ be a ring homomorphism. If φ is injective, then ker $(\varphi) = \{0_R\}$

Theorem T27b: Let $\varphi: R \to S$ be a ring homomorphism. If $\ker(\varphi) = \{0_R\}$, then φ is injective.

Theorem T28a: Let *I* be an ideal of a commutative ring *R*. Assume $a, b \in I$. If $I + a \subseteq I + b$, then I + a = I + b.

Theorem T28b: Let *I* be an ideal of a commutative ring *R*. Assume $a, b \in I$. If $I + a \cap I + b \neq \emptyset$, then I + a = I + b.

Theorem T28c: Let *I* be an ideal of a commutative ring *R*. Assume $a, b \in I$. If I + a = I + b, then $a - b \in I$

Theorem T29d: Let *I* be an ideal of a commutative ring *R*. Assume $a, b \in I$. If $a - b \in I$, then I + a = I + b.

Theorem T29e: Let *I* be an ideal of a commutative ring *R*. Assume $a, b \in I$. Then |I + a| = |I + b|

Definition D15a: Let *I* be an ideal of a commutative ring *R*. Assume $a, b \in I$. Addition of cosets is defined as: $(I + a) + (I + b) \coloneqq I + (a + b)$

Definition D15b: Let *I* be an ideal of a commutative ring *R*. Assume $a, b \in I$. Multiplication of cosets is defined as: $(I + a) \cdot (I + b) \coloneqq I + (a \cdot b)$

Theorem T30a: Let *I* be an ideal of a commutative ring *R*. Addition of cosets of *I* is well defined.

Theorem T30b: Let *I* be an ideal of a commutative ring *R*. Multiplication of cosets is well defined.

Definition D16: Let *R* be a commutative ring and *I* an ideal of *R*. We define *R* mod *I* as: $R/I \coloneqq \{I + r | r \in R\}$

Theorem T31: Let R be a commutative ring and I an ideal of R. Then R/I is a ring.

Definition D17: Let *R* be a commutative ring and *I* an ideal of *R*. The natural homomorphism from *R* to *R*/*I* is: $v: R \to R/I$ $a \mapsto I + a$

Theorem T32: Let *R* be a commutative ring and *I* an ideal of *R*. Denote the natural homomorphism from *R* to R/I as *v*. Then ker(v) = *I*.