Definition D1: A ring is a set of elements with two binary operations, called addition and multiplication, such that:

- Addition is closed
- Addition is commutative
- Addition is associative
- There exists an additive identity. (Do NOT call it 0 unless we have the uniqueness theorem)
- There exist additive inverses (Do NOT call them - a unless we have the uniqueness theorem)
- Multiplication is closed
- Multiplication is associative
- Multiplication distributes over addition

Definition D2: Let R be a ring and $S \subseteq R . S$ is said to be a subring of R if S is itself a ring with the same operations as R.

Theorem T1: Let a, b, and c be elements of a ring R. If $a+b=a+c$, then $b=c$.

Theorem T2: Let a and b be elements of a ring R. Then $a+x=b$ always has a unique solution.

Theorem T3: Let R be a ring. If $a+0_{1}=a$ and $a+0_{2}=a$ for all elements $a \in R$, then $0_{1}=0_{2}$.

Theorem T4: For each element a in a ring R, it's additive inverse is unique.

Theorem T5: Let a be an element of a ring R and denote the additive identity as 0 . Then $a \cdot 0=0 \cdot a=0$.

Theorem T6: Let R be a ring and let $a, b \in R$. Denote the additive inverse of each element $c \in R$ as $-c$, no matter what c is. Then $a(-b)=(-a) b=-(a b)$.

Theorem T7: Let R be a ring, and S a subset of $R . S$ is a subring if and only if all of the following are satisfied for all elements $a, b \in S$:

1. $S \neq \emptyset$
2. $a, b \in S \Rightarrow a+b \in S$
3. $a, b \in S \Rightarrow a \cdot b \in S$
4. $a \in S \Rightarrow-a \in S$

Definition D2: Let R be a ring. A multiplicative identity of R is an element $s \in R$ such that $s r=r s=r$ for all $r \in R$. (Do NOT call it " 1 " until you justify that notation by proving that it is unique.)

Theorem T8: Let R be a ring. If R has a multiplicative identity, then it is unique.

Definition D3: Let R and S be rings. A function $\varphi: R \rightarrow S$ is called a ring homomorphism if is satisfies:

1. $\varphi(r+s)=\varphi(r)+\varphi(s)$ for all $r, s \in R$.
2. $\varphi(r s)=\varphi(r) \varphi(s)$ for all $r, s \in R$.

Definition D4: Let R and S be rings. A ring homomorphism $\varphi: R \rightarrow S$ is called a ring isomorphism if is also one-to-one and onto. In this case R and S have an identical structure as rings.

Definition D5: Let R be a ring. An element $b \neq 0$ in R is called a zero divisor if there is another nonzero element $a \in R$ such that $a b=0$.

Definition D6: A ring that is commutative with unity and no zero divisors is called an integral domain.

Theorem T9: Let R be an integral domain and suppose $a \neq 0$. If $a b=a c$, then $b=c$.

Definition D7: Let R be a ring with unity and $x \in R$. If there is some element $y \in R$ such that $x y=1$, we say that x is invertible, or a unit. The set of all units of R is denoted either $U(R)$ or R^{*}.

Definition D8: Let R be a commutative ring and $a, b \in R$. We say that a and b are associates of each other if there is some $u \in R^{*}$ such that $a=u b$.

Definition D9: An integral domain in which every nonzero element is invertible is called a field.
Theorem $\mathbf{T 1 0}$: Let n be an integer at least $2 . \mathbb{Z}_{n}$ is a field if and only if p is prime.

Theorem T11: $x \in \mathbb{Z}_{m}$ is a unit if and only if $\operatorname{gcd}(x, m)=1$.
Theorem T12: Let p be a prime number and $0 \neq x \in \mathbb{Z}_{p}$. Then $x^{p-1}=1$ in \mathbb{Z}_{p}.

Theorem T13: Let R be a finite integral domain. Then R is a field.

Definition D11: A principal ideal is an ideal with a single generator: $\langle a\rangle:=\{a r \mid r \in R\}$. A ring is called a principal ideal domain (PID) if every ideal is principal.

Theorem T14a: Let R be a commutative ring with identity. Fix two elements $a, b \in R$. If $\langle a\rangle \subseteq\langle b\rangle$, then $a=b t$ for some $t \in R$.

Theorem T14b: Let R be a commutative ring with identity. Fix two elements $a, b \in R$. If $a=b t$ for some $t \in R$, then $\langle a\rangle \subseteq\langle b\rangle$.

Theorem T15a: Let R be a commutative ring with unity and $r \in R$. If $\langle r\rangle=R$, then r is a unit.

Theorem T15b: Let R be a commutative ring with unity and $r \in R$. If r is a unit, then $\langle r\rangle=R$.

Theorem T16a: Let R be an integral domain and let $r, s \in R$. If $\langle r\rangle=\langle s\rangle$, then r and s are associates.

Theorem T16b: Let R be an integral domain and let $r, s \in R$. If r and s are associates, then $\langle r\rangle=\langle s\rangle$.

Theorem T17a: Let R be a commutative ring with unity. If R is a field then its only ideals are $\{0\}$ and R itself.

Theorem T17b: Let R be a commutative ring with unity. If its only ideals are $\{0\}$ and R itself then R is a field.

Theorem T18: \mathbb{Z} is a PID.

Theorem T19: Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then $\varphi\left(0_{R}\right)=0_{S}$

Theorem T20: Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then $\varphi(-a)=-\varphi(a)$ for all $a \in R$.

Theorem T21: Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then $\varphi(a-b)=\varphi(a)-\varphi(b)$.
Theorem T22: Let $\varphi: R \rightarrow S$ be a ring homomorphism. Assume R has unity, φ is onto and $S \neq\left\{0_{S}\right\}$. Then $\varphi\left(1_{R}\right)=1_{S}$.
Theorem T23: Let $\varphi: R \rightarrow S$ be a ring homomorphism. Assume R has unity, φ is onto and $S \neq\left\{0_{S}\right\}$. Then if $a \in R$ is a unit, then $\varphi(a)$ is as well. Furthermore, $(\varphi(a))^{-1}=\varphi\left(a^{-1}\right)$.

Theorem T24: Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then $\varphi(R)$ is a ring.

Definition D12: Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then the kernel of φ is $\operatorname{ker}(\varphi):=\left\{r \in R \mid \varphi(r)=0_{S}\right\}$

Definition D13: Let $\varphi: R \rightarrow S$ be a ring homomorphism. The preimage of an element $s \in S$ is

$$
\varphi^{-1}(s):=\{r \in R \mid \varphi(r)=s\}
$$

Theorem T25a: Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then $\operatorname{ker}(\varphi)$ is a subring of R.

Theorem T25b: Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then $\operatorname{ker}(\varphi)$ is an ideal of R.

Definition D14: Let R be a ring, $r \in R$, and I an ideal of R. The coset of I determined by r is:

$$
I+r:=\{a+r \mid a \in I\}
$$

Theorem T26: Let $\varphi: R \rightarrow S$ be a ring homomorphism. Assume $s \in \varphi(R)$ and $r \in \varphi^{-1}(s)$. Then:

$$
\varphi^{-1}(s)=\operatorname{ker}(\varphi)+r
$$

Theorem T27a: Let $\varphi: R \rightarrow S$ be a ring homomorphism. If φ is injective, then $\operatorname{ker}(\varphi)=\left\{0_{R}\right\}$
Theorem T27b: Let $\varphi: R \rightarrow S$ be a ring homomorphism. If $\operatorname{ker}(\varphi)=\left\{0_{R}\right\}$, then φ is injective.

Theorem T28a: Let I be an ideal of a commutative ring R. Assume $a, b \in I$. If $I+a \subseteq I+b$, then $I+a=I+b$.

Theorem T28b: Let I be an ideal of a commutative ring R. Assume $a, b \in I$. If $I+a \cap I+b \neq \emptyset$, then $I+a=I+b$.

Theorem T28c: Let I be an ideal of a commutative ring R. Assume $a, b \in I$. If $I+a=I+b$, then $a-b \in I$

Theorem T29d: Let I be an ideal of a commutative ring R. Assume $a, b \in I$. If $a-b \in I$, then $I+a=I+b$.
Theorem T29e: Let I be an ideal of a commutative ring R. Assume $a, b \in I$. Then $|I+a|=|I+b|$

Definition D15a: Let I be an ideal of a commutative ring R. Assume $a, b \in I$. Addition of cosets is defined as:

$$
(I+a)+(I+b):=I+(a+b)
$$

Definition D15b: Let I be an ideal of a commutative ring R. Assume $a, b \in I$. Multiplication of cosets is defined as:

$$
(I+a) \cdot(I+b):=I+(a \cdot b)
$$

Theorem T30a: Let I be an ideal of a commutative ring R. Addition of cosets of I is well defined.

Theorem T30b: Let I be an ideal of a commutative ring R. Multiplication of cosets is well defined.

Definition D16: Let R be a commutative ring and I an ideal of R. We define R mod I as:

$$
R / I:=\{I+r \mid r \in R\}
$$

Theorem T31: Let R be a commutative ring and I an ideal of R. Then R / I is a ring.

Definition D17: Let R be a commutative ring and I an ideal of R. The natural homomorphism from R to R / I is:

$$
\begin{aligned}
v: R & \rightarrow R / I \\
a & \mapsto I+a
\end{aligned}
$$

Theorem T32: Let R be a commutative ring and I an ideal of R. Denote the natural homomorphism from R to R / I as v. Then $\operatorname{ker}(v)=I$.

